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ABSTRACT 

It is nearly axiomatic, that to take the greatest advantage 
of the useful features available in a development system, and to 
avoid the negative interactions of those features, requires the 
exercise of a design methodology which constrains their use. A 
major design support feature of the Ada language is abstraction: 
for data, functions, processes, resources and system elements in 
general. Atomic abstract types can be created in packages 
defining those private types and all of the overloaded 
operators, functions and hidden data required for their use in 
an application. Generically structured abstract types can be 
created in generic packages defining those structured private 
types (i.e. lists, trees), as buildups from the user-defined 
data types which are input as parameters. A study is made of 
the design constraints required for software incorporating 
either atomic or generically structured abstract types, if the 
integration of software components based on them is to be 
subsequently performed. The impact of these techniques on the 
reusability of software and the creation of project-specific 
software support environments is also discussed. 

INTRODUCTION 

The reusability of Ada software developed in support 
environments will be wholly dependent upon the quality of those 
environments. The ability of programmers that are relatively 
inexperienced in Ada to generate reusable software will be 
enhanced by an environment rich in already reusable software 
components, which act as models f o r  good design. In an analogy 
to a factory, components which are tooled to fit can be easily 
assembled. Atomic abstract types define objects which represent 
the discrete phenomena that are the subjects of the system 
development. Generically structured abstract types organize the 
objects of the system in a manner representing the relationships 
between those objects. If atomic and generically structured 
abstract types are defined according to some general design 
goals and constraints, then the subsequent assembly of these 
software components is made considerably easier. 

BRIEF BACKGROUND 

Kennedy Space Center/ Engineering Development/ Digital 
Electronics Engineering Division is in the process of 
prototyping distributed systems supporting I & T applications, 
particularly the Space Station Operations Language (SSOL) 
System, which is the I & T subset of the User Interface Language 

E.l.l.l 



(UIL) for the Space Station. The discussions in this paper were 
developed from the results of systems designed and developed in 
Ada to demonstrate the general feasibility of creating 
software support environments which maximized the reusability of 
software components. The Ada environment used was that of VAX 
Ada under VAX/VMS. 

OBJECT DEFINITION IN ADA 

The design and development of software components that meet 
the needs of the user community can be viewed largely as an 
effort to define and refine the definition of abstract objects 
and their associated operations in computer systems. The 
definition of objects in these systems is akin to a simulation 
effort. There is a direct correlation between the effectiveness 
of programs and the fidelity with which objects in those 
programs simulate the behavior of the external phenomena they 
are intended to represent. For example, an element in a 
scheduler queue, representing a process awaiting execution, must 
reflect the correct state of the process (priority, blocked for 
I / O ,  etc.) for the scheduler to function properly. The element 
must be distinguishable from other elements and not lose 
identity or integrity during operations. 

As in simulation efforts,  the goals and objectives for 
defining an object in a system should be specified at the 
outset. The system functional requirements should drive the 
process, while the scope of the system concept constrains 
development to areas that are productive. 

SIMPLE TYPES 

An object is characterized by it's attributes and the 
operations which mediate it's interactions with other objects in 
the environment. In the Ada language, the process of object 
definition begins with selection of base type or the creation 
of a composite type. 

Objects whose behavior is simple enough to be modeled by a 
numeric value, can be represented by subtypes or derived types, 
of numeric or discrete types. The subtype definitions can 
include range constraints, and in the case of non-discrete 
numeric types (UNIVERSAL-REAL, UNIVERSAL-FIXED) , they can 
include limits of precision for the representation. Declared 
objects of subtypes are, however, compatible with their base 
type and subtypes of the base type, which can allow erroneous 
combinations by operations allowable in the base type (adding 
MINUTES to HOURS, for example) . 

If the allowable operations of these base types are 
unsuitable, they can be restricted by the use of a derived type, 
which inherits the operations of the base type, but only for 
declared objects of the derived type (incompatible with the base 
type). This can yield dimensional errors, however, for 
multiplies and divides of objects of the same type (FT * FT = 
FT, instead of FT squared). In these cases subtypes and derived 
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types are too simple in behavior to correctly represent the 
objects in applications, and composite types must be used. [l] 

COMPOSITE TYPES 

Objects which are characterized by collections Of 
components or attributes are defined in Ada by the use of 
composite types: arrays and records or by access types 
which designate composite types. Objects which are collections 
of compatible components are represented by arrays, whereas 
objects which have various kinds of attributes are represented 
by records or access types designating records. Objects with 
attributes, and which have complex interactions with other 
objects in the system, would seem to be the more useful, 
although these are the most complex to define. 

Objects with attributes interact with each other by the 
means of those attributes, under the control of the allowable 
operations of the objects. These interactions can produce 
modifications and deletions of the objects or creation of new 
and different kinds of objects. In Ada, the operations are 
defined as subprograms (functions and procedures) with 
parameters of the object type or subtype. 

The operations which correspond to functions can be 
overloaded onto the set of computer math symbols for the given 
types. A function producing a scalar dot product from two input 
vectors could be given the name for instance. At the same 
time, a function producing a vector cross product from two 
vectors, could also be named The compiler would resolve 
these two operations from the type of the returned object. The 
compiler cannot, however, resolve these operations when the type 
of return is unknown. Vector products defined in this way could 
not then be embedded in longer equations, where they would 
generate intermediate results of indeterminate type. 

DIFFERENTIATION 

There are different levels of definition f o r  a 
system, it's objects and operations. Definition of the gross 
structure of a system can typically be generated, in a fairly 
simple manner, by the object-oriented or functional 
decomposition methods. Definition of the fine structure of 
the system involves different methods, which produce results of 
greater complexity. One proposed second-stage method is 
differentiation. 

If the definition of an object is found to be too amorphous 
to yield the correct behavior, differentiation can produce 
separate and more distinct types of object. The differentiated 
types will tend to be closely coupled and capable of interacting 
with the same operations that the undifferentiated type allowed 
for interactions of objects of that type. Where they differ in 
behavior is that area of operations or attributes that required 
the split. This type of tightly coupled interaction between 
different types is produced automatically in subtypes of the 
same base type, through inheritance. Subtypes, however, are very 
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tightly coupled, and can only differ from each other in terms of 
ranges (numeric or discrete subtypes), numbers of components 
(constrained array subtypes) or discriminant values (constrained 
record subtypes). 

If the differentiation is more extensive, requiring objects 
of differently structured base types, then all of the allowed 
interactions between the objects must be defined more 
laboriously. The rewards of this diligence, which are unique to 
Ada, are the isolation of system complexity to a package 
defining all the closely coupled interactions, while the 
programming using these types and operators can proceed at a 
higher level. 

OBJECT LIFE CYCLE 

Definition of a system down to the fine structure produces 
a definition that is no longer intuitive, and requires some non- 
intuitive method for it's verification. The life 'cycle of an 
object may prove to be useful in providing a path to follow, in 
the analysis of complex objects. 

All objects have their own life cycle, however brief, in 
the system environment. They are created and deleted by an 
operation or system event, either explicitly or implicitly. 
During their life they interact with other system objects, with 
results dictated by the appropriate operations. 

The verification of the results of object definition can be 
performed by a "walkthroughll of the object life cycle. During 
this process, the defined attributes and operations of the 
object can be evaluated in the light of the events it 
experiences: creation, interactions and demise. If, under 
these circumstances and within the scope of the requirements, 
the abstract object behaves similarly to the phenomena which it 
is intended to represent, then the object with it's attributes 
and operations can be expected to reliably support the 
development of applications concerning that phenomena. 

The Ada language features which directly support the 
definition of objects are packages and private types. Packages 
contain the definition of the object and allowable operations, 
which are visible, and the implementation, which is hidden. 
Private types further close the window of visibility, allowing 
only higher-level or interface attributes of the object 
definition to be visible 

TWO CLASSES OF ABSTRACT TYPES 

For the purposes of the assembly of software components, 
there appear to be two broad classes of private types. The types 
which support the definition of objects as discussed above are 
called, only for the purpose of distinction, atomic abstract 
types. These types represent the discrete phenomena which are 
the subjects of system development, and are defined in 
packages as private types. They have the indivisible property of 
atoms, and can be incorporated into the second class of types: 
the generically structured abstract types. 
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Generically structured abstract types are managed by 
generic software components (packages or subprograms), and are 
built-up from application-defined types which are contained as 
components of the generic structure. These structured abstract 
types organize the objects of the system in a manner 
representing the relationships between objects, and they shall 
be discussed first. 

GENERICALLY STRUCTURED ABSTRACT TYPES 

These structures, built-up from application-defined 
atomic abstract types and managed by generic packages, support 
the basic organization of the elements of the system. The 
organization of objects in a structure is a representation of 
the relationships between those objects, which can be either 
static or dynamic in nature. 

The specification of a generic package is parameter driven. 
The generic formal parameters of a generic package are the basis 
and controlling factor in the reusability of the package. The 
use of generic software has implications, however, for the 
design of atomic abstract types which are later to be used in an 
‘instantiation of that software. The benefits of reusability can 
only be fully realized if the design of atomic abstract types 
follows distinct lines. 

Taking an example of a generic sorting routine, it can 
readily be seen that the reusability of the routine is dependent 
upon the initial typing of the generic formal parameters and the 
matching rule for generic formal parameters. If the parameter is 
typed as simply private, then the maximum reusability is 
achieved, because it will match nearly everything (except 
discriminant or limited private types). However, if the 
parameter is typed as a real (digits <>) or integer (range <>), 
the operations that are consistent with those types will be 
available to the internals of the generic, but at the expense of 
only allowing those types as parameters. 

It should be noted here, that although a generic formal 
parameter of the limited private type would extend the 
generality of the generic software component, it is not useful 
due to the lack of both assignment and compare for equality 
within the generic. Without assignment, components of the 
structure cannot be set, or initialized to any value. 

The concept of generic programming turns private types and 
visibility inside out. In the case of a generic package, the 
structure of a type passed as a formal parameter is not visible 
to the package which manipulates it. 

In the support of generic structures, typically all that is 
needed is the assignment function @@:=I@ , the compare for equality 
function It=)I , and an ordering function @I>@@. The assignment and 
compare functions are available with type private parameters, 
and the ordering function I@>@@ can be passed as another formal 
parameter. With no other details or operations, structures like 
lists, queues, indexes, and hierarchical tree structures 
containing objects of the generic formal parameter type can be 
defined and maintained by the package. 
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ATOMIC ABSTRACT TYPES 

The atomic abstract types are the components which fit into 
the generically-structured abstract types, during the assembly 
of software components. As such they must be crafted to fit 
easily into the generic structure. 

As has been noted, generic formal parameters of the maximum 
range of applicability are those of the private type. The 
problem then is to design atomic abstract types that match the 
simple model of the private type: assignability and 
comparability. 

Discriminant types, although very useful on their own for 
the development of objects with constraining attributes, are 
fairly disfficut to use in conjunction with generic software. 
Very quickly it is found that, to match a discriminant type with 
a generic formal parameter, the types for each individual 
constraint must first be passed as generic formal parameters. 
Then the discriminant type must be passed with it's 
constraints. Unconstrained types are not allowed. Generic 
formal parameters of this combination should be fairly difficult 
to match with any type other than the type initially matched, 
making for extremely reduced reusability. 

Access types, which are the foundation of the dynamic 
structure of generically structured abstract types, are of 
little use in constructing atomic abstract types. They 
perform the assignability function more or less according to the 
simple model of private types, however they do not create a copy 
of the designated object (object pointed to), but instead copy 
the access object value (pointer address) onto the new object. 
This creates a shared object, with a certain loss of object 
identity, and could cause integrity problems inside the generic 
structure which incorporates the access object as a component. 

The ordering function used to order the elements of a 
generic structure (index, tree), can be defined by overloading 
the O>lV function for the access object, to create a function 
comparing the designated objects values (for a string access 
type, the lV>I1 would compare the designated strings). 

The compare function VI=11 is another matter, however. It 
exists for access types, but compares the values of the access 
objects to see if they designate the same designated object. 
The )l=II can only be overloaded if the abstract access type is 
declared as limited private instead of private. When this is 
done, however, the assignment operation is lost (and cannot 
be overloaded), which is needed for internally manipulating the 
generic structure inside the generic package. 

Embedding the access type in a non-discriminant record 
would not change the reference nature of the contained object, 
and the problem of compares. 

Embedding discriminant types, however, is very successful. 
AS long as the constraint is not needed for data validity, this 
technique can hide the discriminant type within a non- 
discriminant record. The non-discriminant record will match a 
generic formal parameter of type private. This allows, for 
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- -  
instance, a variable string (unconstrained array type), to be 
contained within a non-discriminant record, and passed to 
generic procedures easily. 

DESIGN GOALS AND CONSTRAINTS FOR ATOMIC ABSTRACTION 

In the process of feasibility prototyping for the 
generation of application independent software support 
environments, the following design goals and constraints were 
found to yield, for packages supporting atomic abstract types, 
the maximum in abstraction, flexibility, and potential for 
generic 

1. 

2 .  

3 .  

4 .  

5 .  

6 .  

structure incorporation: 

Package-def ined atomic objects being declared in the 
application software should, where possible, be 
defined as abstract types, that is, made private. 

If the operations of an object are analogous to those 
of standard objects already in the system, overload 
the same names for the operations. This enhances 
readability and learnability of the application 
software support environment. Do not, however, 
overload names with non-analogous functions. 

The functions performed by the operations of an 
object should be intuitive. The action 
performed by an operation should be predictable from 
the context of the application software. 

The outcome or result of operations of an object 
should be intuitive. The kind of object produced by 
operators, for example, should be predictable from 
the context of the application software. 

Maximize the completeness of the application interface 
to the atomic type defined in the package. Give the 
application developer all of the operations required 
to manipulate and combine objects, in an easy-to-use 
yet well controlled manner. 

Maximize the potential use of reusable software 
incorporating the abstract atomic type into 
generically structured types. This can be accomplished 
by defining types that perform simply under the 
operations of assignment and comparison (not 
discriminant types or access types, which follow a 
more complex model). 

DESIGN GOALS AND CONSTRAINTS FOR GENERIC ABSTRACTION 

In the process of feasibility prototyping for the 
generation of application independent software support 
environments, the following design goals and constraints were 
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found to vield the maximum in reusability and flexibility for 
packages 

1. 

2 .  

3 .  

4 .  

5 .  

6 .  

7 .  

ianaging generically structured abstract types : 
- 

Package-managed generic objects that are declared in 
the application software should, where possible, be 
defined as abstract types, that is, made private. 

Maximize the generality of the package. This comes 
from the use of formal generic parameters, 
particularly for types, that match the widest variety 
of application input types (type private instead of 
digits -3, for example). 

Maximize the usability of the application interface to 
the package. Extend, as far as possible into the 
application domain, access to the structures managed 
in the package, without violating the integrity of the 
internals, or the independence of the application 
from the generic software component (generality). 

Maximize the completeness of the application interface 
to the package. Give the application developer all the 
operations required to access and manipulate the 
internal structures, in a package-controlled manner. 

Support, if possible, multiple objects with the same 
package. This limits the need to re-instantiate the 
package several times within the same scope, for 
processing of multiple objects. 

Design for flexibility: a single tool, suited to a 
wide range of applications, is more likely to be 
remembered, and used by developers. 

Cover the infrequent failure modes. Most failures of 
algorithms and processing logic in programs occur at 
the extremes of their domain of applicability. 
Testing should cover the ends of ranges and the 
infrequent states of the application. If the software 
component is reusable, it will be used in a wider 
range of applications, and the infrequent failure 
modes will occur more frequently. 

PACKAGES SUPPORTING GENERICALLY STRUCTURED ABSTRACT TYPES 

The index package, described as a list of elements ordered 
by another set of associated elements or keys, will be used as 
an example for a package supporting a generically structured 
abstract type. The index structure itself should be a private 
type. It should be defined in the package specification, not 
hidden, so that it can be declared as an object in the scope of 
the application. The package should be capable of accessing and 
managing several objects of type INDEX, so there should be a 
USE-INDEX function, which selects the appropriate object, and 
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sets a package-internal access object to the same value as that 
passed as the USE-INDEX parameter. Then there will be two 
access objects pointing to the index structure internals, one in 
the application scope, one in the package scope. 

Since the access object in the application scope cannot be 
changed, neither can the access object in the package scope 
(unless there is a subsequent USE-INDEX call). They must stay 
aligned. This means that the INDEX access object cannot 
designate the head of the index-list, but must instead designate 
an access object that designates the head of the index-list. 
This is in case an insert must be made at the head of the index, 
and the access object that designates it must be modified. 

The importance of having the index object in the scope of 
the application is in the flexibility of use of the object at 
the application level. The developer should be capable of 
passing the object as a parameter to subprograms developed at 
the higher level. If the object of type INDEX is hidden, this 
flexibility is not there. 

The indication of success or failure of an operation 
(add/delete, search, etc.) should be available for the 
application, for the purpose of logical tests and conditional 
branching. It should be contained in the package scope, visible 
in the package specification, and it can be called STATUS. 
Values contained in status can be defined in the package 

FOUND, etc.) . specification to show conditions (END-OF-LIST, ELEMENT-NOT, 

CURRENT-NODE POINTER FACILITY 

One question about package operations that must be answered 
before the design phase is about the context-sensitivity of 
operations. Higher level operations, like those involved in 
command languages, are typically constrained to be context 
insensitive, on a line-by-line basis. This means that the 
interpreter of the command or function requires no information, 
other than that in the command, to interpret it completely. 
There is no contextual bas i s .  

This can be effectively at a high level of application, but 
is difficult for the implementation of any complex 
functionality. For the package managing a complex structure, it 
is really necessary for the package to keep a contextual 
indication of the current position of the search through the 
structure in between calls. A USE-INDEX call to a new index 
would reset this position indicator, of course, as would any 
search, add/delete, or sequential positioning call. This 
prevents the need for a node search upon every call. This 
position indication variable can be called CURRENT. 

CURRENT is of necessity an access object. If CURRENT is 
kept in the application scope, it must be passed in the 
subprogram interfaces of every operation. Also, being in the 
application scope, synchrony can be lost between USE-INDEX calls 
(pointing to the wrong INDEX designated structure). 

If CURRENT is kept in the package, the package can track 
application context, and reset CURRENT upon USE-INDEX 
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invocation. Also, it should be hidden, because it would be 
difficult for the application to interpret it anyway. 

With these design issues decided, a generic package for 
managing INDEX objects can be developed. 

REUSABILITY ISSUES 

Reusability is generally discussed in terms of taking 
software written at other sites, and not necessarily on the same 
machine, and porting it for use in an application. There is a 
context here, which can be called inter-project reusability. 
This kind of reusability is based on two types of software 
development. 

In the first type of reusable software, software components 
or interfaces to non-Ada components are produced for general 
application support areas, like DEMS, user interface software, 
graphics, communications, data reduction and others, even AI. 
These will certainly be necessary to include, as they are more 
expensive to develop than to buy. They will also be the most 
commercially available. 

In the second type of reusable software, and with far less 
availability, software components are written targetting the 
application area of interest. These will probably be less of a 
fit to the specific application, with fewer packages to choose 
from . 

In the I & T area, high performance software is hard to 
obtain, and will be in the future. This is due to the narrow 
market and the very high degree of system dependence of the 
applications developed. In application domains with parameters 
like those of I & T, the major gains in Ada reusability will be 
those derived from software designed and developed in the same 
project . 

This kind of reusability can be called intra-project 
reusability, and comes from design by abstraction. High level 
software can be produced for specific application domains by the 
production of packages tailored to support those 
domains. 

Packages implementing private types can be developed that 
support the objects and operations representing the phenomena 
which are the subject of system development. If these objects 
and operations simulate the behavior of those phenomena well 
(within the purposeful domain), then the applications developed 
using them will be higher level, and generally more effective 
and maintainable. 

Generic packages can also be developed supporting the 
static and dynamic relationships between objects in the system. 
If these packages can be made flexible and with maximum 
reusability, then the objects of the system can be organized 
by instantiation of those packages, allowing the system 
relationships to be established on a high order level in a 
logical way. 

The reuse of both sets of software can be enhanced by 
establishing design constraints on each, so that the software 
components of the system can be assembled with maximum 
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likelihood. The design goals and constraints on Ada software can 
not be effectively left as an afterthought. 

PROJECT-SPECIFIC SOFTWARE SUPPORT ENVIRONMENTS 

The effectiveness and reusability of software generated by 
relatively inexperienced Ada programmers will be directly 
related to the project-specific software environment that 
exists when they first enter the project. It will always be 
found that it is easier, quicker and more reliable to construct 
anything from pre-fabricated components that fit together as 
well as Leg0 blocks do. Two things are required to build a good 
set of blocks. 

First, the objects (the logical atoms and molecules of the 
system) and their operations must be represented well by 
packages supporting those atomic abstract types and all of their 
support functions. Secondly, the relations organizing the 
objects of the system must be supported with generic packages 
that are flexible and easy to use. 

In the internals of both of these packages can be buried 
the hidden complexity of the system, and some of the system 
dependencies as well. In this way, technology insertion into the 
system can be accomplished directly, without negatively 
affecting the applications of the system. [2] 

Finally, a good set of blocks is not sufficient to build a 
system. The builder has to know what he is building to be 
effective. There is no substitute for Requirements Analysis and 
Functional Decomposition using data flows and similar techniques 
to express what a system does in a manner traceable back to the 
original User Requirements. The development of Ada and 
the object-oriented design methodologies which Ada directly 
supports will eventually prove, however, to be a large step on 
the way to cracking the problem of what to do after the System 
Requirements are assigned to the top-level components of the 
system. 
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